Higher differentiability for n-harmonic systems with Sobolev coefficients
نویسندگان
چکیده
منابع مشابه
A new subclass of harmonic mappings with positive coefficients
Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk $U$ can be written as form $f =h+bar{g}$, where $h$ and $g$ are analytic in $U$. In this paper, we introduce the class $S_H^1(beta)$, where $1<betaleq 2$, and consisting of harmonic univalent function $f = h+bar{g}$, where $h$ and $g$ are in the form $h(z) = z+sumlimits_{n=2}^inf...
متن کاملConnection coefficients for Laguerre–Sobolev orthogonal polynomials
Laguerre–Sobolev polynomials are orthogonal with respect to an inner product of the form 〈p,q〉S = ∫∞ 0 p(x)q(x)x αe−x dx + λ∫∞ 0 p′(x)q′(x)dμ(x), where α > −1, λ 0, and p,q ∈ P, the linear space of polynomials with real coefficients. If dμ(x) = xαe−x dx, the corresponding sequence of monic orthogonal polynomials {Q n (x)} has been studied by Marcellán et al. (J. Comput. Appl. Math. 71 (1996) 24...
متن کاملStrichartz Estimates for Wave Equations with Coefficients of Sobolev Regularity
Wave packet techniques provide an effective method for proving Strichartz estimates on solutions to wave equations whose coefficients are not smooth. We use such methods to show that the existing results for C1,1 and C1,α coefficients can be improved when the coefficients of the wave operator lie in a Sobolev space of sufficiently high order.
متن کاملHigher-Order Linear Differential Systems with Truncated Coefficients
We consider the following problem: given a linear differential system with formal Laurent series coefficients, we want to decide whether the system has non-zero Laurent series solutions, and find all such solutions if they exist. Let us also assume we need only a given positive integer number l of initial terms of these series solutions. How many initial terms of the coefficients of the origina...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2015
ISSN: 0022-0396
DOI: 10.1016/j.jde.2015.07.004